If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=7x^2
We move all terms to the left:
20-(7x^2)=0
a = -7; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-7)·20
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*-7}=\frac{0-4\sqrt{35}}{-14} =-\frac{4\sqrt{35}}{-14} =-\frac{2\sqrt{35}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*-7}=\frac{0+4\sqrt{35}}{-14} =\frac{4\sqrt{35}}{-14} =\frac{2\sqrt{35}}{-7} $
| 5t−1=t-17/3 | | (q^2)-(0.3006q)-0.0145=0 | | 2(c-2)=7 | | 56=(x+5)+(x+9)+x | | 2x+56=180-8x-74 | | 18-x=24x | | 9x−13=-4 | | 3x−14=-5 | | X+(x+5)+(x+9)=53 | | 4.9t^2+5t-1=0 | | 4.9t^2+1.5t+2.5=0 | | 9x-1=87-6x-58 | | 2/9n+0.5=2/3(n+3) | | 9x−1=87-6x-58 | | -4.9t^2+1.5t+2.5=0 | | 6x-12=90-3x-30 | | X+(x+5)+(x-9)=53 | | 7x-92=180-6x-12 | | 3x+4=108-8x+28 | | 3x+4=108-(8x−28) | | 9(-2+n)=-27 | | 5k+4-(6k-2)+(2k-5)-2(3k+7)=0 | | 7(1r-4)=0 | | (2y-10(y+1)+5)+20=30 | | 7x+9x-4x-5=43 | | 9x-75+8x-67=90 | | 30=6000/t | | (2x+13)+x=73 | | (25-2x)(6+4)=30-10x | | -2x+4x=2(3x-4) | | 20=d/1.5 | | 52x+1+495x-51=51 |